🧭
🧭
🧭
🧭
区块链技术指南
搜索文档…
🧭
🧭
🧭
🧭
区块链技术指南
前言
修订记录
如何贡献
区块链的诞生
核心技术概览
典型应用场景
分布式系统核心技术
密码学与安全技术
密码学简史
Hash 算法与数字摘要
加解密算法
消息认证码与数字签名
数字证书
PKI 体系
Merkle 树结构
Bloom Filter 结构
同态加密
其它技术
本章小结
比特币 —— 初露锋芒的区块链
以太坊 —— 挣脱加密货币的枷锁
超级账本 —— 面向企业的分布式账本
Fabric 安装与部署
智能合约开发
Fabric 架构与设计
区块链服务平台设计
性能与评测
附录
由
GitBook
提供支持
同态加密
定义
同态加密(Homomorphic Encryption)是一种特殊的加密方法,允许对密文进行处理得到仍然是加密的结果。即对密文直接进行处理,跟对明文进行处理后再对处理结果加密,得到的结果相同。从抽象代数的角度讲,保持了同态性。
同态加密可以保证实现处理者无法访问到数据自身的信息。
如果定义一个运算符
△
\triangle{}
△
,对加密算法
E
和 解密算法
D
,满足:
E
(
X
△
Y
)
=
E
(
X
)
△
E
(
Y
)
E(X\triangle{}Y) = E(X)\triangle{} E(Y)
E
(
X
△
Y
)
=
E
(
X
)
△
E
(
Y
)
则意味着对于该运算满足同态性。
同态性来自代数领域,一般包括四种类型:加法同态、乘法同态、减法同态和除法同态。同时满足加法同态和乘法同态,则意味着是代数同态,即全同态(Full Homomorphic)。同时满足四种同态性,则被称为算数同态。
对于计算机操作来讲,实现了全同态意味着对于所有处理都可以实现同态性。只能实现部分特定操作的同态性,被称为特定同态(Somewhat Homomorphic)。
问题与挑战
同态加密的问题最早在 1978 年由 Ron Rivest、Leonard Adleman 和 Michael L. Dertouzos 提出(同年 Ron Rivest、Adi Shamir 和 Leonard Adleman 还共同发明了 RSA 算法)。但第一个“全同态”的算法直到 2009 年才被克雷格·金特里(Craig Gentry)在论文《Fully Homomorphic Encryption Using Ideal Lattices》中提出并进行数学证明。
仅满足加法同态的算法包括 Paillier 和 Benaloh 算法;仅满足乘法同态的算法包括 RSA 和 ElGamal 算法。
同态加密在云计算和大数据的时代意义十分重大。目前,虽然云计算带来了包括低成本、高性能和便捷性等优势,但从安全角度讲,用户还不敢将敏感信息直接放到第三方云上进行处理。如果有了比较实用的同态加密技术,则大家就可以放心地使用各种云服务了,同时各种数据分析过程也不会泄露用户隐私。加密后的数据在第三方服务处理后得到加密后的结果,这个结果只有用户自身可以进行解密,整个过程第三方平台无法获知任何有效的数据信息。
另一方面,对于区块链技术,同态加密也是很好的互补。使用同态加密技术,运行在区块链上的智能合约可以处理密文,而无法获知真实数据,极大的提高了隐私安全性。
目前全同态的加密方案主要包括如下三种类型:
基于理想格(ideal lattice)的方案:Gentry 和 Halevi 在 2011 年提出的基于理想格的方案可以实现 72 bit 的安全强度,对应的公钥大小约为 2.3 GB,同时刷新密文的处理时间需要几十分钟。
基于整数上近似 GCD 问题的方案:Dijk 等人在 2010 年提出的方案(及后续方案)采用了更简化的概念模型,可以降低公钥大小至几十 MB 量级。
基于带扰动学习(Learning With Errors,LWE)问题的方案:Brakerski 和 Vaikuntanathan 等在 2011 年左右提出了相关方案;Lopez-Alt A 等在 2012 年设计出多密钥全同态加密方案,接近实时多方安全计算的需求。
目前,已知的同态加密技术往往需要较高的计算时间或存储成本,相比传统加密算法的性能和强度还有差距,但该领域关注度一直很高,笔者相信,在不远的将来会出现接近实用的方案。
函数加密
与同态加密相关的一个问题是函数加密。
同态加密保护的是数据本身,而函数加密顾名思义保护的是处理函数本身,即让第三方看不到处理过程的前提下,对数据进行处理。
该问题已被证明不存在对多个通用函数的任意多密钥的方案,目前仅能做到对某个特定函数的一个密钥的方案。
以前
Bloom Filter 结构
下一个
其它技术
最近更新
5mo ago
复制链接
在 GitHub 上编辑
大纲
定义
问题与挑战
函数加密