🧭
区块链技术指南
  • 前言
  • 修订记录
  • 如何贡献
  • 区块链的诞生
    • 记账科技的千年演化
    • 分布式记账与区块链
    • 集大成者的比特币
    • 区块链的商业价值
    • 本章小结
  • 核心技术概览
    • 定义与原理
    • 技术的演化与分类
    • 关键问题和挑战
    • 趋势与展望
    • 认识上的误区
    • 本章小结
  • 典型应用场景
    • 应用场景概览
    • 金融服务
    • 征信管理
    • 权属管理与溯源
    • 资源共享
    • 物流与供应链
    • 物联网
    • 数字艺术品和 NFT
    • 其它场景
    • 本章小结
  • 分布式系统核心技术
    • 一致性问题
    • 共识算法
    • FLP 不可能原理
    • CAP 原理
    • ACID 原则与多阶段提交
    • Paxos 算法与 Raft 算法
    • 拜占庭问题与算法
    • 可靠性指标
    • 本章小结
  • 密码学与安全技术
    • 密码学简史
    • Hash 算法与数字摘要
    • 加解密算法
    • 消息认证码与数字签名
    • 数字证书
    • PKI 体系
    • Merkle 树结构
    • Bloom Filter 结构
    • 同态加密
    • 其它技术
    • 本章小结
  • 比特币 —— 初露锋芒的区块链
    • 比特币项目简介
    • 比特币诞生背景
    • 工作原理
    • 挖矿过程
    • 共识机制
    • 闪电网络
    • 侧链
    • 热门问题
    • 相关工具
    • 本章小结
  • 以太坊 —— 挣脱加密货币的枷锁
    • 以太坊项目简介
    • 核心概念
    • 主要设计
    • 相关工具
    • 安装客户端
    • 使用智能合约
    • 智能合约案例:投票
    • 本章小结
  • 超级账本 —— 面向企业的分布式账本
    • 超级账本项目简介
    • 社区组织结构
    • 顶级项目介绍
    • 开发必备工具
    • 贡献代码
    • 本章小结
  • Fabric 安装与部署
    • 简介
    • 本地编译组件
    • 容器方式获取
    • 本地方式启动 Fabric 网络
    • 容器方式启动 Fabric 网络
    • 本章小结
  • 管理 Fabric 网络
    • 简介
    • 使用通道
    • 管理节点
    • 管理链上代码
    • 监听网络事件
    • 自动发现网络信息
    • 使用运维服务
    • 如何升级网络版本
    • 使用 SDK
    • 注意事项与最佳实践
    • 本章小结
  • 智能合约开发
    • 简介
    • 链码概念与结构
    • 示例一:信息公证
    • 示例二:交易资产
    • 示例三:数字货币发行与管理
    • 示例四:学历认证
    • 示例五:社区能源共享
    • 小结
  • Fabric 架构与设计
    • 简介
    • 架构设计
    • 消息协议
    • 小结
  • 区块链服务平台设计
    • 简介
    • IBM Bluemix 云区块链服务
    • 微软 Azure 云区块链服务
    • 使用超级账本 Cello 搭建区块链服务
    • 本章小结
  • 性能与评测
    • 简介
    • Hyperledger Fabric v0.6
    • 小结
  • 附录
    • 术语
    • 常见问题
    • Go 语言开发相关
      • 安装与配置 Golang 环境
      • 编辑器与 IDE
      • 高效开发工具
      • 依赖管理
    • ProtoBuf 与 gRPC
    • 参考资源链接
由 GitBook 提供支持
在本页
  • 智能合约
  • 账户
  • 交易
  • 以太币
  • 燃料

这有帮助吗?

在GitHub上编辑
  1. 以太坊 —— 挣脱加密货币的枷锁

核心概念

基于比特币网络的核心思想,以太坊项目提出了许多创新的技术概念,包括智能合约、基于账户的交易、以太币和燃料等。

智能合约

智能合约(Smart Contract)是以太坊中最为重要的一个概念,即以计算机程序的方式来缔结和运行各种合约。最早在上世纪 90 年代,Nick Szabo 等人就提出过类似的概念,但一直依赖因为缺乏可靠执行智能合约的环境,而被作为一种理论设计。区块链技术的出现,恰好补充了这一缺陷。

以太坊支持通过图灵完备的高级语言(包括 Solidity、Serpent、Viper)等来开发智能合约。智能合约作为运行在以太坊虚拟机(Ethereum Virtual Machine,EVM)中的应用,可以接受来自外部的交易请求和事件,通过触发运行提前编写好的代码逻辑,进一步生成新的交易和事件,可以进一步调用其它智能合约。

智能合约的执行结果可能对以太坊网络上的账本状态进行更新。这些修改由于经过了以太坊网络中的共识,一旦确认后无法被伪造和篡改。

账户

在之前章节中,笔者介绍过比特币在设计中并没有账户(Account)的概念,而是采用了 UTXO 模型记录整个系统的状态。任何人都可以通过交易历史来推算出用户的余额信息。而以太坊则采用了不同的做法,直接用账户来记录系统状态。每个账户存储余额信息、智能合约代码和内部数据存储等。以太坊支持在不同的账户之间转移数据,以实现更为复杂的逻辑。

具体来看,以太坊账户分为两种类型:合约账户(Contracts Accounts)和外部账户(Externally Owned Accounts,或 EOA)。

  • 合约账户:存储执行的智能合约代码,只能被外部账户来调用激活;

  • 外部账户:以太币拥有者账户,对应到某公钥。账户包括 nonce、balance、storageRoot、codeHash 等字段,由个人来控制。

当合约账户被调用时,存储其中的智能合约会在矿工处的虚拟机中自动执行,并消耗一定的燃料。燃料通过外部账户中的以太币进行购买。

交易

交易(Transaction),在以太坊中是指从一个账户到另一个账户的消息数据。消息数据可以是以太币或者合约执行参数。

以太坊采用交易作为执行操作的最小单位。每个交易包括如下字段:

  • to:目标账户地址。

  • value:可以指定转移的以太币数量。

  • nonce:交易相关的字串,用于防止交易被重放。

  • gasPrice:执行交易需要消耗的 Gas 价格。

  • gasLimit:交易消耗的最大 Gas 值。

  • data: 交易附带字节码信息,可用于创建/调用智能合约。

  • signature:基于椭圆曲线加密的签名信息,包括R,S,V 三个字段。。

类似比特币网络,在发送交易时,用户需要缴纳一定的交易费用,通过以太币方式进行支付和消耗。目前,以太坊网络可以支持超过比特币网络的交易速率(可以达到每秒几十笔)。

以太币

以太币(Ether)是以太坊网络中的货币。

以太币主要用于购买燃料,支付给矿工,以维护以太坊网络运行智能合约的费用。以太币最小单位是 wei,一个以太币等于 10^18 个 wei。

以太币同样可以通过挖矿来生成。成功生成新区块的以太坊矿工可以获得 2 个以太币的奖励,以及包含在区块内的燃料费用和发现叔块(Uncle block)获得的奖励。用户也可以通过交易市场来直接购买以太币。

目前每年大约可以通过挖矿生成超过一千万个以太币,单个以太币的市场价格目前超过 300 美金。

燃料

燃料(Gas),控制某次交易执行指令的上限。每执行一条合约指令会消耗固定的燃料。当某个交易还未执行结束,而燃料消耗完时,合约执行终止并回滚状态。

Gas 可以跟以太币进行兑换。需要注意的是,以太币的价格是波动的,但运行某段智能合约的燃料费用可以是固定的,通过设定 Gas 价格等进行调节。

上一页以太坊项目简介下一页主要设计

最后更新于1个月前

这有帮助吗?